
國立台灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

多代理人推理系統於整合常識知識之研究

A Multiagent Reasoning System for

Commonsense Knowledge Integration

郭彥伶

Yen-Ling Kuo

指導教授： 許永真 博士

Advisor: Jane Yung-jen Hsu, Ph.D.

中華民國 101 年 1 月

January, 2012

Acknowledgments

「常識，嘗試。」這是這一段旅程的最佳註解，卻不會是句點，只是喘口氣繼續

找尋下一個風景。

這段過程中，最感謝的是我的指導教授，許永真老師。從大四專題開始，老師

給予我許多機會去嘗試各種有趣的問題，讓我以初生之犢的姿態接觸到世界上重

要的研究，而老師教導我許多面對事情的態度，也會伴隨著我一直走下去。

再者，感謝我的研究夥伴們，Bani、Doudi、Edward，多虧了你們讓我們可以

有最活躍的討論，也做出最多有趣的成果，許多事都要感謝你們的幫忙才能順

利完成，“Bani 的說話機器人、Doudi 的學習常識的迴圈、Edward 的說故事系

統”一定是這過程中最豐富的一站。

感謝婉容學姐和草莓在各方面的協助。也感謝 iAgents 大家的陪伴。

Thanks to Prof. Henry Lieberman for teaching me a lot of things during my

visit at MIT media lab. I’ll remember the message you give me: “As a computer

scientist, we should think about how to make impact to the world.”

The most important thing is not only the theories, the systems, and applications

we have, but also to use our knowledge to solve the hard problems in our society

and the world. From this point, I’ll start to tell my own story.

i

ii

Abstract

Robust intelligent systems require commonsense knowledge. While significant

progress has been made in building large commonsense knowledge bases, they are

intrinsically incomplete. It is difficult to combine multiple knowledge bases due to

their different choices of representations and reasoning techniques, thereby limiting

users to one knowledge base and its reasoning methods for any specific task. Instead

of merging knowledge bases into a single one, this paper presents a multiagent system

for commonsense knowledge integration, and proposes approaches to (1) matching

knowledge bases without a common ontology for reasoning, (2) combining different

reasoning methods to answer queries from application, and (3) improving coverage

of knowledge base via resource-bounded crowdsourcing. Two case studies on video

editing and dialog assistance interfaces are also presented to show their improvement

in handling user’s actions after incorporating the proposed reasoning system.

iii

摘摘摘要要要

智慧系統需要常識知識使其更能應付使用者的各種狀況，雖然現今已建立了許

多大型的常識知識庫，但這些常識知識庫也都還不完整。應用程式在使用常識知

識時，往往因為知識庫選擇的知識表現與推理方式而被侷限於只能使用單一的知

識庫做應用。相對於將所有知識庫合併成單一知識庫的作法，本論文提出一個用

於常識知識整合之多代理人系統，以及系統中的三個重要機制：(1) 配對含有目標

知識的知識庫以做推理 (2) 結合多個推理方法來回答應用程式的查詢 (3) 在有限

的人力配置下以群眾外包的技術收集知識以增進知識庫的覆蓋率。最後，本論文

以影片編輯與對話輔助的使用者介面作為應用案例，由此兩個案例證實結合此多

代理人推理系統的介面代理人可以顯著地增加其處理使用者需求的數量。

iv

Contents

Acknowledgments i

Abstract iii

List of Figures ix

List of Tables x

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Intelligent User Interface Requires Common Sense 2

1.1.2 Challenges in Using Common Sense 4

1.2 Problem Definition . 5

1.2.1 Notations . 5

1.2.2 Commonsense Knowledge Integration Problem 6

1.3 Proposed Solution . 7

1.4 Thesis Organization . 9

v

Chapter 2 Background 10

2.1 Commonsense Computing . 10

2.1.1 Knowledge Representation . 11

2.1.2 Commonsense Knowledge Collection 11

2.1.3 Commonsense Reasoning . 13

2.2 Related Work . 16

2.2.1 Knowledge Source Integration 16

2.2.2 Web Service Composition . 17

Chapter 3 Commonsense Knowledge Integration 19

3.1 Multiagent Framework . 19

3.1.1 Agents . 21

3.1.2 Mechanisms . 22

3.2 Matchmaking of Reasoning Agents 23

3.2.1 Capability Modeling . 23

3.2.2 Capability Evaluation for Matchmaking 25

3.3 Reasoning Composition . 28

3.3.1 Profile of Reasoning Method 28

3.3.2 Composition Algorithm . 31

3.4 Improving Coverage of KB by Crowd-sourcing 33

3.4.1 Resource-bounded Knowledge Acquisition 34

3.4.2 Guiding KB . 37

vi

3.4.3 Similarity as a Weak Inference 38

3.4.4 Acquisition via KB Approximation 40

Chapter 4 Experimental Design and Result 43

4.1 Experimental Setup . 43

4.1.1 Reasoning Method . 44

4.1.2 Planner . 44

4.2 Matchmaking of Reasoning Agents 45

4.2.1 Experimental Design . 45

4.2.2 Experimental Result . 46

4.2.3 Discussion . 48

4.3 Reasoning Composition . 49

4.3.1 Coverage . 50

4.3.2 Correctness of Reasoning Results 51

4.4 Improving Coverage of KB . 53

4.4.1 Acquisition method: Virtual Pets 53

4.4.2 Experimental Result . 54

Chapter 5 Case Study 59

5.1 Study 1: Storied Navigation . 59

5.2 Study 2: Dialog Assistant . 61

Chapter 6 Conclusion 66

vii

6.1 Summary of Contribution . 66

6.2 Future Work . 68

Bibliography 69

viii

List of Figures

1.1 Traditional media browsing: (a) Map view. (b) Chronological view.

(c) Key word search. (d) Video suggestion by producer. 3

2.1 The projection of Chinese AnalogySpace 15

3.1 The multiagent framework for commonsense knowledge integration . 20

3.2 The ontology of concept types . 30

3.3 Example of reasoning composition . 33

4.1 Hit rate of queries . 50

5.1 Storied Navigation suggests video when user types “a leader says...” . 62

5.2 Dialog Assistant gives picture cues when user selects “destroy building” 64

5.3 Number of pairs for each medium score. 65

ix

List of Tables

1.1 Categories of concept type . 6

2.1 Number of concepts in different knowledge bases 10

3.1 The example of KB matrix. 38

4.1 Experimental results: Accuracy and Kendall’s τ rank correlation co-

efficient . 47

4.2 Example of concepts with different coverage scores 55

4.3 Quality of the generated questions . 56

4.4 Improvements in concept coverage . 57

5.1 Found related actors and objects of “president” 61

x

Chapter 1

Introduction

This chapter provides an overview of the thesis. First, we explain why an applica-

tion, especially an intelligent user interface, requires common sense and the problem

in using the current commonsense knowledge bases (KBs). We then define the com-

monsense knowledge integration problem and give our proposed solution to this

problem.

1.1 Motivation

Commonsense knowledge is an essential element for building intelligent systems.

It enables computers to infer new facts or to perform actions with common sense

about the world so that applications can interact with humans intelligently. Also, it

helps break the software brittleness bottleneck by taking place whenever the domain-

specific knowledge fails [27].

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Intelligent User Interface Requires Common Sense

Due to the increasing complexity of the tasks users may perform with an application.

The one-to-one correspondence of user interface may not fit user’s goal in using an

application. Commonsense knowledge has been proposed to bridge the gap between

user’s goals and functionalities of applications [17]. An interface agent may make

use of a broad range of commonsense knowledge, such as event-subevent structure,

temporal relationship, and specific facts, to provide assistance to users [18].

Consider we are browsing media items on the web to gather information about

“the earthquake that struck Japan on March 11, 2011.” There are great difficul-

ties in having a comprehensive understanding of this event using the current media

browsing interfaces. Most of the interfaces provide only single view to list media

items. Figure 1.1 (a) and (b) sort news according to timeline and location respec-

tively. We need to browse through every item in the collection to find out the desired

items. The search or recommendation functionalities are only keyword spotting and

recommendation by producers (see figure 1.1 (c) and (d).) For example, when we

searched for videos about “Japan tsunami” using the current search engine, we got

no video mentioning the victims in the earthquake. These problems limit user’s

experience in media browsing. The interface agent with commonsense knowledge

would act as an assistant to organize the media items using the context of an event,

rather than as a conventional tool to list content.

These contextual commonsense knowledge is useful not only for organizing media

items but also for context-aware and storytelling interfaces.

1.1. MOTIVATION 3

Figure 1.1: Traditional media browsing: (a) Map view. (b) Chronological view. (c)
Key word search. (d) Video suggestion by producer.

4 CHAPTER 1. INTRODUCTION

1.1.2 Challenges in Using Common Sense

For thirty years, many projects [16, 39] have been devoted to the collection of com-

monsense knowledge. While significant progress has been made in building large

commonsense KBs, e.g. Cyc [16] and ConceptNet [11], such KBs are still intrin-

sically incomplete or even inconsistent. An interface agent easily fails to provide

assistance to users due to these problems. Therefore, it may be necessary for an

intelligent system to reason with multiple commonsense KBs at the same time in or-

der to meet the specific goals of an applications. Example 1 demonstrates a sample

scenario from an application developer’s viewpoint.

Example 1. (Goal-oriented search engine [19])

The goal-oriented search engine is a search engine interface that uses commonsense

reasoning to turn search goals specified by the user in some natural language descrip-

tion into effective query terms. When processing an input like “my golden retriever

has a cough”, it should identify that the user’s search goal is to find a veterinar-

ian/remedy for his/her dog. Unfortunately, systems developed using ConceptNet

alone will be unable to find the answers, as it does not contain any knowledge about

golden retrievers. Alternatively, an intelligent system can first consult the lexicon

database WordNet to find a generalization of the concept, e.g. “golden retriever is

a kind of dog”. It is then possible to find “veterinarian” by reasoning from “dog”

and “cough” in the ConceptNet semantic network.

In summary, enabling applications to reason across multiple KBs improves their

goal-achieving behaviors. In the dynamic world today, it is especially important

1.2. PROBLEM DEFINITION 5

that interface agents should utilize the up-to-date knowledge in multiple KBs to

interact with their users.

1.2 Problem Definition

Using knowledge from multiple KBs at the same time can be viewed as a process

to ask an knowledge integration system to reason out the answer to a given query.

This section offers the formal definitions of commonsense knowledge integration,

including the commonsense KB and format of input queries used in this paper.

1.2.1 Notations

Before giving the notations, we first present the scenario in which developers use

commonsense knowledge to build applications. A commonsense knowledge base that

contains sentences acquired from acquisition agents (e.g. experts, online users, or

text mining algorithms). Developers use input queries to ask knowledge base for

the knowledge required in applications. Different reasoning methods can be applied

on one knowledge base to reason out answers to different queries. Developers use

input queries to ask KBs for the knowledge required in applications.

Commonsense Knowledge Base

Suppose there are n available commonsense knowledge bases. LetK = {K1, K2, . . . , Kn}

be the set of available KBs and each KB contains sentences in its own representation

and is a subset of world facts. We use In = {in1, in2, . . . , inm} to denote the set of

6 CHAPTER 1. INTRODUCTION

reasoning methods that can be performed on knowledge base Kn.

Input Query

An input query q is used for finding contextual information of a concept. The

first part of input query is the targeted concept, which is represented in natural

language. The second part specifies the in/output type of a query. The in/output

type is denoted by type selected from three categories: noun phrase, verb phrase,

and adjective phrase (see table 1.1). For example, we use “bible:object;location” as

our input query if we would like to find the related locations of the object “bible.”

Table 1.1: Categories of concept type

Category Types

Noun phrase actor, object, time, and location
Verb phrase action and goal
Adjective phrase adjective

1.2.2 Commonsense Knowledge Integration Problem

Since the queries that can be answered by a KB forms the basis of an intelligent

system, the commonsense knowledge integration problem can be considered as the

following formulation:

Definition 1. Given a set of input queries Q = {q1, q2, . . . , ql} and commonsense

KBs K = {K1, K2, . . . , Kn} with different reasoning abilities I = {I1, I2, . . . , In},

a knowledge integration system should answer the queries Q by combining or in-

teroperating different commonsense KBs. The knowledge integration problem is

1.3. PROPOSED SOLUTION 7

constructing a knowledge integration system that can answer more queries than the

system that uses any single KB alone.

Same as the answers returned by a single KB, the answers returned by the

knowledge integration system can also be used by applications. Using the API

provided by the knowledge integration system, application developers are able to

get answers to their queries without learning usages of multiple commonsense KBs.

As a result, the application that adopts the knowledge integration system as its base

would be more robust in handling users’ requests.

A number of tools have been proposed to tackle the knowledge integration prob-

lem by merging existing ontologies or KBs into a single one, including PROMPT [29],

FCA-Merge [45], CHIMAERA [22], and Blending [10]. However, previous study [13]

on extending Chinese ConceptNet by “Blending” with English ConceptNet showed

that it often brings many noises into the merged knowledge base. It is hard to ap-

ply these merging method to large and noisy commonsense KBs crowdsourced from

general public.

1.3 Proposed Solution

Instead of merging KBs into a whole by mapping multiple ontologies, my idea is to

combine different reasoning methods to handle queries that cannot be answered by

a single KB. By using other reasoning methods as an intermediate step to continue

the inference chain, we are able to answer more queries.

In order to handle the heterogeneity of commonsense KBs, we choose a multia-

8 CHAPTER 1. INTRODUCTION

gent framework to build the commonsense knowledge integration system. Multiagent

systems provide a powerful paradigm to facilitate application building when multiple

heterogeneous knowledge representations and reasoning methods are required [26].

The proposed system will satisfy the following requirements:

• Allow heterogeneous knowledge representations of KBs

Each research group builds their own commonsense knowledge base according

to their purposes. Hence, it is hard to find a unified schema to impose on these

KBs. We should utilize the reasoning abilities of KBs while maintaining their

own autonomy.

• Facilitate cross-KB reasoning

Answering more queries using commonsense knowledge bases involves the in-

teroperation of different reasoning methods in multiple KBs, as described in

example 1. By organizing reasoning methods in different ways, more queries

can be answered to enhance the abilities of applications to handle user’s re-

quests.

• Reflect changes after updates of KBs

The uptodate commonsense knowledge bases are collected from the online

users or automatically extracted from web pages. This kind of knowledge

bases evolve and change faster than KBs codified by knowledge engineers.

The system should also identify and reflect changes in its reasoning results.

The agents in my proposed system would match suitable KBs, compose their

reasoning methods, and monitor KBs to handle queries. Chapter 3 will give a

1.4. THESIS ORGANIZATION 9

detailed discussion about the proposed system and design of each agent.

1.4 Thesis Organization

This thesis start by overview of commonsense computing technologies a nd the

related projects for knowledge/service integration. Along with the definision of the

multiagent framework used in our commonsense integration system, the mechanisms

for matching KBs, composing reasoning methods, and improving coverage of KBs

are introduced. We then present three experiments to evaluate the performance

of each mechanism. Two case studies are conducted to discuss how the proposed

system can be integrated into the existing interface agents to provide more assistance

to users. This thesis concludes with a summarization of the proposed system and

future work.

Chapter 2

Background

2.1 Commonsense Computing

For many years, several groups have been devoted to building commonsense knowl-

edge bases. Despite large number of facts have been collected for different knowledge

bases (see table 2.1), they are intrincically incomplete and inconsistent. For example,

the overlap of concepts in ConceptNet and WordNet is only 4.79%.

Table 2.1: Number of concepts in different knowledge bases

Knowledge base Number of concepts
ConceptNet 274,477
WordNet 128,391
Wikipedia 3,440,143

In order to fully utilize common sense in programs, a system to integrate different

commonsense knowledge bases are required for the benefit of application building.

However, it is hard to integrate different knolwedge bases into a whole due to their

10

2.1. COMMONSENSE COMPUTING 11

different design decisions in representations, quantity, quality, and means of access.

This section reviews the essential elements in commonsense computing to demon-

strate the heterogeneity of commonsense KBs.

2.1.1 Knowledge Representation

When building applications, developers may choose commonsense knowledge bases

with different knowledge representations to serve their specific requirements [39].

The two most prominent representations for common sense are formal logical frame-

work and semantic network, used by Cyc [16] and ConceptNet [20] respectively.

The formal logical framework is appropriate for representing precise and unam-

biguous facts, which facilitates the automation of commonsense reasoning. On the

other hand, the semantic network is more flexible in incorporating new knowledge

and contextual reasoning. It represents all sentences in the corpus as a directed

graph [11]. The nodes of this graph are concepts, and its labeled edges are relations

between two concepts. For example,

• UsedFor(a, b), e.g. [Spoon] is used for [eating].

• IsA(a, b), e.g. [Dog] is an [animal].

2.1.2 Commonsense Knowledge Collection

Codifying millions of pieces of human knowledge into machine usable forms has

proved to be time-consuming and expensive. While techniques for mining knowledge

from corpus or web pages have been developed [8, 36, 2], it is difficult for computers

12 CHAPTER 2. BACKGROUND

to discover the commonsense knowledge underlying a text [7]. Therefore, sources of

commonsense knowledge are still majorly reliant on experts or the general public.

Expert-developed Knowledge Bases

A team of knowledge engineers encode common sense into the knowledge base.

This approach ensures the highest quality of data. However, it is expensive, time-

consuming, and difficult to scale up.

WordNet WordNet [25] is a highly structured database of words, which are care-

fully crafted by expert linguists. Synonyms are grouped into synsets and are con-

neted with each other by relations. It has been successfully used in a variety of

applications to measure the proximity of words.

Cyc Started in 1984, the Cyc project [16] carefully crafted knowledge into CycL,

a rigorous logic-based language to ensure its correctness. Now, the OpenCyc 2.0

ontology contains hundreds of thousands of terms with millions of assertions relating

the terms to each other.

Collaboratively-built Knowledge Bases

With the success of Web 2.0 sites and crowd-sourcing techniques. Many research

groups start to use websites or games to appeal online users for contribution. This

approach helps the collection of large amount of data. However, the data collected

from these sources is highly dependent on the performance of users, which also makes

2.1. COMMONSENSE COMPUTING 13

the knowledge bases incomplete and inconsistent.

ConceptNet The Open Mind Common Sense (OMCS) project at MIT [40] has

collected over a million sentences in multiple languages and encoded them into se-

mantic network. The English and Portuguese corpora were collected from over

15,000 contributors at the OMCS website1 within the span of 10 years. In addition,

about 20% of the English sentences were collected via Verbosity, a human compu-

tation game [46]. With innovations in community-based social games, the uptodate

knowledge in the Chinese ConceptNet was successfully collected and verified via

question-answering between players within a year [15].

Wikipedia Wikipedia2 is one of the world’s largest knowledge bases of both en-

cyclopaedic knowledge and commonsense knowledge. The knowledge is stored in

documents connected with page links. It also provides a taxonomy by its cate-

gories, where articles can be assigned to one or more categories. The unstructured

documents are thus put into a network of categories.

2.1.3 Commonsense Reasoning

It is straighforward to equip a variety of applications with common sense by querying

the knowledge bases using APIs. For example, one may ask if a specific assertion is

present in the corpus. Furthermore, knowledge bases with different representations

may call for different reasoning methods.

1http://openmind.media.mit.edu/
2http://www.wikipedia.org

14 CHAPTER 2. BACKGROUND

Commonsense Reasoning in Semantic Network

The semantic network is suitable for finding related and similar concepts. Measures

of similarity/relatedness quantify how much two concepts are alike/related. Both

relatedness and similarity measures are developed in WordNet [32], ConceptNet [43],

and Wikipedia [44] so that it is possible to reason in large and noisy semantic

AnalogySpace [43] generalizes the reasoning method called cumulative analogy [3]

so that it is robust enough in large and noisy semantic network. The assertions are

divided into concepts and features, i.e. descriptions of concepts such as “UsedFor

eating” or “dog IsA”. The knowledge in ConceptNet is represented as a sparse

matrix, and its most prominent features can be identified by using singular value

decomposition (SVD). Concept similarity is defined in terms of their shared features.

Figure 2.1 is the projection of the first two dimensions of Chinese ConceptNet.

We can find that the proximate concepts shares some features. For example, the

concepts on the 1st axis is the things people don’t want.

Blending [10] was proposed as a technique to integrate common sense into other

systems. In particular, blending of commonsense knowledge with domain-specific

knowledge can be done by finding an analogical closure across multiple, previously

separated sources of data. Two sparse matrices are combined linearly into a sin-

gle, larger matrix. Reasoning with blended knowledge bases containing overlaping

information can produce inferences that would not be produced from either input

alone. The blended knowledge bases are often used for identifying the prominent

senses of a domain-specific knowledge. For instance, applications have been devel-

oped to show how the blended knowledge bases help affect sensing [1] and word

2.1. COMMONSENSE COMPUTING 15

Figure 2.1: The projection of Chinese AnalogySpace

sense disambiguation [12].

These reasoning techniques can also be integrated into our reasoning composition

as one of our reasoning method to provide reasoning for a specific domain. With

more reasoning methods involved in our integration system we are able to produce

various reasoning results for applications.

Commonsense Reasoning in Formal Logical Framework

The logic framework, on the other hand, uses deduction and theorem prover to

reason new facts. Heuristics are often applied to logic-based reasoning for better

efficiency. OpenCyc3 also released its planner for reasoning out actions and events

3http://www.opencyc.org/

16 CHAPTER 2. BACKGROUND

with its rules and assertions. These reasoners are exploited in Cyc’s intelligent

assistant [31] to recognize user’s plan. However, these logical reasoning aims to

provide the exact answer to users. Given the different reasoning properties, the

logical reasoning methods are rarely apply on the contextual reasoning required by

interface agents.

2.2 Related Work

Multi-agent systems have been proposed to integrate and reuse information in web

environment for many years. Most of them either integrate information from differ-

ent sources for clients to query or combine the existing web services to create new

funtionalities for applications to use. This section reviews approaches to integrate

mutliple knowledge sources and services.

2.2.1 Knowledge Source Integration

Most of the knowledge integration systems opt to combine loosely coupled infor-

mation sources into integrated wholes, such as KRAFT [33] and KSNet [42]. In

such systems, it is often necessary to merge existing ontologies into a single ontol-

ogy. Ontology mapping [9] is a process that combines distributed and heterogeneous

ontologies based on linguistic or structural similarity. Multiple knowledge sources

can then be reused and queried based on the merged ontology. InfoSleuth [28] used

another approach to integrating heterogeneous information sources. An application-

specific ontology is used as a basic ontology to locate different queries. However,

2.2. RELATED WORK 17

these approaches are not feasible for commonsense knowledge integration, because

there is no common ontology known a priori. There also exists conflicts in different

commonsense knowledge bases, e.g. the confidence of being true of an action is

different in different contexts, such that it may result in errors if we merge them

into a single one.

2.2.2 Web Service Composition

Instead of combining different information sources, service composition [38] puts

multiple services together to create new funtionalities. This approach is more flex-

ible for applications to use the desired services in dynamic and heterogeneous web

environment.

Some initiatives, e.g. Web Services Business Process Execution Language (WS-

BPEL) [30] and OWL-S process model [21], are defined to represent service com-

position where the data/excution flow of a composite service is known. However,

the depndency of data and process may not be available because web services are

developed by different organizations and can be created on the fly [35]. Dynamic

composition method aims to generate the composition plan automatically. Simi-

lar to the context of planning problem, each web service can be specified by its

preconditions and effects such that a composition plan can be generated automat-

ically by planners without knowledge of predefined workflow. Several techniques

such as situation calculus [23], rule-based planning [24], Hierarchical Task Network

(HTN) planner [41], and logical theorem prover [34] have been used in web services

composition.

18 CHAPTER 2. BACKGROUND

In our commonsense knowledge integration problem, the reasoning methods pro-

vided by different knowledge bases can be viewed as different web services. In order

to facilitate interoperation of commonsense knowledge bases, we can also combine

multiple reasoning methods to perform complex reasoning while the targeted parts

are not available in one knowledge base. The state-of-the-art service composition

techniques are plausible ways to combine existing reasoning methods.

Chapter 3

Commonsense Knowledge

Integration

This chapter describes the multiagent framework and mechanisms used for answering

queries by composing different reasoning methods. Before giving detailed description

of the mechanisms, I would l ike to introduce the framework used in this thesis.

3.1 Multiagent Framework

Figure 3.1 presents the proposed multiagent framework for commonsense knowledge

integration. Instead of merging knowledge sources into a single ontology, the key

idea of this framework is to treat knowledge as resources that reasoning methods

can access to provide services for applications. The integration of knowledge bases

is achieved via matchmaking and composition of different reasoning methods.

19

20 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

Figure 3.1: The multiagent framework for commonsense knowledge integration

3.1. MULTIAGENT FRAMEWORK 21

3.1.1 Agents

Each knowledge base is maintained by a KB agent and is used by reasoning agents.

Dependencies between reasoning methods are managed and aggregated by task plan-

ning agents. Following are the details about the responsibilities of the agents in this

framework.

• KB agent: A KB agent monitors knowledge contained in a KB by creating a

capability model of the KB. If a matchmaker asks for its capability of handling

a query, it will answer according to the capabilty model of the KB. It is also

equipped with behaviors to improve the coverage of a KB.

• Reasoning agent: There are multiple reasoning agents for a KB. They are

building blocks for answering a query. Each reasoning agent performs an

atomic task that corresponds to a reasoning method of the KB such as finding

related objects of an activity. Once the KB agent updates the KB, the quality

of reasoning result is also improved.

• Agent directory: An agent directory records the types of reasoning agents

in the system and the knowledge bases they can access. It provides the in-

formation of reasoning agents for the matchmaker to sort out the potential

matches.

• Matchmaker: A matchmaker forms sample queries to KB agents to check

which knowledge bases are able to handle the incoming request. It returns a list

of matched reasoning agents which are sorted by their capability of answering

22 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

the query.

• User agent: A user agent represents a specific application. In most applica-

tions, it is an interface agent. It observes users’ actions and forms queries to

the task planning agent to get reasoning results to provide assistance to users.

• Task planning and execution agent: Based on the query of a user agent, a

task planning and execution agent sends the requests to the matched reasoning

agents and forms a composite inference chain to answer query.

3.1.2 Mechanisms

There are three required mechanisms in realizing such a framework. First, it needs

to match the reasoning agents that access KBs containing the targeted knowledge

domain. Unlike service matchmaking in service-oriented computing, there is no

common ontology for matchmaker to identify the capability of large commonsense

KBs with heterogeneous knowledge representation. Second, a composition sequence

of reasoning agents should be dynamically generated to find out the desired out-

put. The profiles of reasoning agents should be specified to facilitate composition.

Finally, the system should maintain a good reasoning quality. In recent knowledge

acquisition processes, online users are often recruited to contribute their common

sense. However, previous research also found that unguided crowd-sourcing suffers

from high redundancy and contributes little to the coverage of KB [4, 14]. Since

the coverage of a KB is a key factor in improving the query answering ability of a

knowledge-based system, a KB agent will designed to improve the coverage of a KB

3.2. MATCHMAKING OF REASONING AGENTS 23

by utilizing other KB as a guide. In the following sections, I’ll describe the models

and procedures used in the three mechanisms.

3.2 Matchmaking of Reasoning Agents

The capability of a reasoning agent can be described by the scope of knowledge it

can access. In order to decide whether a reasoning agent can handle a request from

task planning agent properly (i.e. return good answers), each KB agent should be

equipped with a compact model that summarizes its KB, and be able to inform the

matchmaker of its evaluation results quickly. This section introduces our distributed

capability model which is built by transforming the concepts contained in the KBs

into a k-dimensional space using low-rank approximation. Queries from applications

are evaluated using vector similarity to decide which KB to match up with.

3.2.1 Capability Modeling

To most KBs, we can argue that they can be determined by or associated with a

small set of eigenconcepts. Therefore, we can use the eigenconcepts as the capability

model of KB agent. For example, latent semantic analysis (LSA) [5] shows the

empirical success of this argument.

Correlation Matrix

Consider a grounded commonsense knowledge baseK, a sentence can be represented

as a triple, (ci, relation, cj), where ci and cj are concepts. Each concept can form a

24 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

vector of related concepts ~v, where the jth component of the vector, vj, is the number

of triples containing ci and cj in K. Thus, we can construct an n × n correlation

matrix A, where n is the number of concepts in K. The correlation matrix reflects

the capabilities of a KB agent by describing the relatedness of concepts in the KB

it can access.

Knowledge Represented by Eigenconcepts

In order to quickly evaluate whether a KB can answer a given query, we need to

reduce the dimension of a correlation matrix without losing its capability. The high-

dimensional concept correlation matrix is then re-formulated into a k-dimensional

vector space, where k � n. A concept in K is represented as a vector in a k-

dimensional space spanned by eigenconcepts. It is the responsibility of a KB agent

to identify the dimensions that are useful in summarizing the KB while truncating

dimensions that are less relevant.

Low-rank approximation is an approach to achieving dimensionality reduction.

Given a n × n correlation matrix A, we aim to approximate it by a matrix of

rank k, which is much smaller than n. In this thesis, we apply singular value

decomposition (SVD) on the correlation matrix to achieve low-rank approximation:

A ≈ Ak = UkΣkU
T
k , where

• Uk: a n× k matrix that relates concepts to eigenconcepts

• Σk: a k × k diagonal matrix of singular values σi that assigns weights to each

eigenconcept.

3.2. MATCHMAKING OF REASONING AGENTS 25

The best rank k is chosen in algorithm 1 so that the resulted vector space is the

best approximation to describe the correlation of concepts in the KB. We call this

vector space “the capability model of the KB.”

Algorithm 1 Capability Model (K)

Require: A commonsense knowledge base K
Ensure: A set of eigenvectors that span the capability model Uk and the projection

Ak of concepts in K
1: Build a correlation matrix A from triples in K
2: Apply SVD on the correlation matrix: A = UΣUT

3: Choose the largest k such that σk − σk+1 ≤ θ where θ is a small constant
4: Represent concepts in the k-dimensional capability model: Ak = UT

k A
5: return Uk and Ak

The confidence of choosing k by σk−σk+1 ≤ θ is motivated by the Eckart-Young

theorem [6].

Theorem 1. (Eckart-Young Theorem) [6]

Let A = UΣV T = Udiag(σ1, . . . , σr, 0, . . . , 0)V
T . For any k with 0 ≤ k ≤ r,

‖A− Ak‖2 = σk+1 (3.1)

Theorem 1 implies that σk−σk+1 is the key factor of incorporating the kth column

of U into the compact representation of capability model. If we set θ small enough,

we are returned with the representative eigenconcepts so that the error between real

and modeled capability of KB is within σk+1.

3.2.2 Capability Evaluation for Matchmaking

With the capability model, a KB agent is now able to answer whether it contains

sufficient knowledge for its reasoning agents to answer the requests. Here, two kinds

26 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

of concept vectors are used for capability evaluation:

• Knowledge-based concept vector, ac: The knowledge-based concept vec-

tor, ac, is the projection of concept c in A onto the k-dimensional capability

model, where ac = UT
k A

(c) and A(c) is the column of concept c in A. We use

this vector to represent the knowledge domains involving concept c in the KB.

• Application-based concept vector, v: For an application that would like

to incorporate commonsense knowledge, it should identify a corpus or a set of

concepts to describe the knowledge domain of the application. If the applica-

tion requires up-to-date news, we may use Google search snippets to describe

its knowledge domains. Then, a concept vector v can be created from the

co-occurred concepts of concept c in the corpus. We use this vector to state

the knowledge domains required by the application.

The KB agent evaluates its capability of answering a query regarding concept c by

comparing whether the its knowledge-based and application-based concept vectors

are aligned in the capability model. In the evaluation procedure, the KB agent

projects input application-based vector v onto its capability model, i.e. vk = UT
k v.

The capability of KB to handle the request is correspondent to the similarity between

ac and vk. The higher the similarity score of ac and vk, the higher capability the

KB has to provide the required knowledge for its reasoning agents to answer the

query. Algorithm 2 illustrates the procedure a KB agent performs to evaluate the

capability of the monitored KB. The evaluation score returned by algorithm 2 is

defined by the cosine similarity of ac and vk.

3.2. MATCHMAKING OF REASONING AGENTS 27

Algorithm 2 Evaluate Capability (Uk, Ak, c, v)

Require: A capability model Uk, a projection Ak of concepts in K, a query concept
c, and a application-based concept vector v

Ensure: An evaluation score sim that indicates the capability of K to handle a
request

1: Project v onto the capability model: vk = UT
k v

2: Get vector of c from Ak: ac = column of c in Ak

3: Calculate similarity of ac and vk: sim = ac·vk
‖ac‖‖vk‖

4: return sim

Once the matchmaker gets the request from the task planning agent, algorithm

3 is used for matching suitable KBs. The matchmaker asks every KB agent to get

the evaluation score of each KB respectively, and then sort the KBs based on their

evaluation scores in descending order. Finally, the KBs with evaluation scores > 0.5

are returned to the task planning agent. The task planning agent will send requests

to the reasoning agents of the matched KBs to get answers.

Algorithm 3 Matchmaking (K, c)
Require: A set of available KBs K and a query concept c
Ensure: A sorted list of matched KBs L
1: Construct application-based vector v
2: for Ki in K do
3: sim i = Evaluate Capability (Uik, Aik, c, v)
4: end for
5: for Ki in K do
6: if sim i > 0.5 then
7: Add KB Ki into L
8: end if
9: end for
10: Sort L in descending order based on the evaluation scores of KBs
11: return L

28 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

3.3 Reasoning Composition

The planning and execution agent forms inference chain using multiple reasoning

agents if it fails to retrieve answer from any of the reasoning agents. However, it

is hard to generate a composition plan dynamically without any knowledge of the

reasoning agents.

Consider the problem of combining multiple reasoning agents to get the target

reasoning results. It is hard to automatically generate a composition plan over the

commonsense semantic networks without any knowledge of the reasoning methods.

With a meta description of reasoning agents, the composition can then be converted

to a planning problem. This section presents our proposed profiles for reasoning

agents and a planning procedure that uses these profiles to dynamically plan a chain

to target concepts. We choose logic planner to manipulate the inference chains, and

the knowledge in commonsense KBs to interact with users.

3.3.1 Profile of Reasoning Method

Before giving the algorithm to find the contextual information of a target concept, we

describe profile used in the reasoning composition process. The profile of reasoning

method serves as a hint for composition.

Profile

A reasoning method can be viewed as a service provided by a commonsense KB.

Therefore, ontologies for sevice profiling, e.g. OWL-S [21], can also be used for spec-

3.3. REASONING COMPOSITION 29

ifying the reasoning method. To differentiate the reasoning methods, we consider

the attributes listed in follows are the properties a reasoning agent should specify

so that the planner can use these information to compose reasoning chain.

(1) Input concept: An input concept comes from user agents or the output of

other reasoning agents. Every reasoning agent takes an input concept to per-

form an atomic reasoning task.

(2) Input type: Since concepts may have multiple senses, the input type serves

as a way for sense disambiguation so that the reasoning method can provide

accurate inference result.

(3) Output type: An output type attaches to every concepts output by reasoning

methods. With the type of output concept, we can check if it is our desired

output. If it is not our target output type, we may redirect the output concepts

to other reasoning methods to form complex reasoning.

(4) Access KB: In most cases, an atomic reasoning method accesses only one com-

monsense KB. Different commonsense KBs may pervide the same reasoning

function for applications. For instance, both WordNet and ConceptNet can

generalize a concept using their own hypernym/IsA relation.

(5) Language: The up-to-date commonsense KBs always support multiple lan-

guages. In order to activate a reasoning method, the language it supports

should match the request from interface agent.

30 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

Concept Type

The input/output types used in the profile of reasoning agents follow the ontology

defined in figure 3.2. In order to keep reasoning agents connected to natural lan-

guage, the representation user agents used to interact with users, the concepts are

associated with three major types: noun phrase, verb phrase, and adjective phrase.

The user agent can use a shallow parser and its application domain to determine

the type of an input concept. The type of an output concept is determined by the

reasoning agent that generate the output concept. This kind of abstraction simpli-

fies the usage of natural-language text and turns natural-language input into a more

computationally useful form for logic planner.

Figure 3.2: The ontology of concept types

3.3. REASONING COMPOSITION 31

3.3.2 Composition Algorithm

Given an input query and the available reasoning agents, the reasoning composition

process can be considered as a planning problem. The input and output types are

the pre-conditions and post-conditions of a reasoning method. This thesis uses a

rule reasoner to achieve composition.

The composition rules and input/output concepts of reasoning agents form a

KB of reasoning methods. In the rule-based planning, a reasoning agent is activated

only if the input concept and its profile satisfy the rules. Two rules are defined for

the basic composition of reasoning methods. They are listed in follows:

(1) If there is a new input concept that is not used by any reasoning agent and the

input type and language of a reasoning agent matches the new input concept,

we can infer a new instance of the reasoning method and use the new input

concept as its input.

(2) If the type and language of an output concept matches the input type and

language of a reasoning method, we can infer a new instance of the reasoning

method and use the output concept as its input.

Procedure of composition is illustrated in algorithm 4. In each iteration, the

task planning agent asserts the output concepts into the KB of reasoning profiles

and infers instances of reasoning methods using the composition rule defined in

this section. This process does a breadth-first traversal with multiple commonsense

semantic networks until the type of output concepts matches the target output type

or the expected relevancy of the inference result is low.

32 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

Algorithm 4 Composition (q)

Require: A knowledge base Kr containing the profiles of reasoning agents R, a
input query concept q with type ti, and an output concept type to.

Ensure: A list of related concepts L.
1: L←− ∅; d = 0;
2: Assert input concept q with type ti into Kr;
3: R = Infer possible reasoning methods in Kr;
4: repeat
5: C = Get reasoning results from inferred reasoning methods R;
6: for each concept c in C do
7: if type of c matches to then
8: Add c into L;
9: else
10: Assert c into Kr;
11: end if
12: end for
13: d = d+ 1;
14: if Evaluate Relevency (L,C, d) then
15: R = Infer possible reasoning methods in Kr;
16: else
17: break;
18: end if
19: until L 6= ∅
20: Sort concepts in L by relevancy;
21: return L

Consider an example in which our input concept “golden retriever” is an “actor”

and the expected output type is “location”. Figure 3.3 shows part of the composition

results. First, golden retriever is asserted in the KB of reasoning profiles to activate

“location finder”, “action finder”, and “generalizer”. Even if the “location finder”

fails to find the related location of golden retriever, other output concepts “chase

frisbee” and “dog” are asserted by other reasoning methods and activate “location

finder” to find output locations. The evaluation function in algorithm 4 is used to

3.4. IMPROVING COVERAGE OF KB BY CROWD-SOURCING 33

estimate the relevancy of the retrieved concept to decide whether should we continue

the inference chain or not.

Figure 3.3: Example of reasoning composition

From the example, we can find that this composition process inherently facilitates

the interoperation of commonsense KBs since we use reasoning methods as the

building block for composition.

3.4 Improving Coverage of KB by Crowd-sourcing

Crowd-sourcing of commonsense knowledge can be viewed as a process to ask online

users for sentences that can be put into the knowledge base. In general, the coverage

of facts in a KB is limited by the human and/or computational resources available

for knowledge acquisition. A KB agent should utilize the available resources to

improve the coverage of KB. In this section, I review the knowledge acquisition

problem through a question answering framework and then introduce the resource

bound in knowledge acquisition. With the consideration of available resources, it

34 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

is possible for KB agent to improve coverage of KB by acquiring more informative

sentences.

3.4.1 Resource-bounded Knowledge Acquisition

Before giving the algorithm to acquire knowledge, we first present the question

answering framework used in this section. In addition to the definition of KB and

reasoning methods mentioned in chapter , questions are used in crowd-sourcing for

asking acquisition agents for answers to add into the KB.

Knowledge Base

As defined in chapter , K is a knowledge base that contains grounded sentences and

is a subset of world facts. Given a set of concepts C and a set of relations R, every

sentence is a triple (s, r, o), where s ∈ C, o ∈ C, and r ∈ R. Every triple in K

must be associated with either true or false. If an inference algorithm i can derive

sentence µ from K, we write K `i µ.

Question and Answer

As in Learner [3], we use the complement of a concept in a sentence as a feature f

of that concept. We use F to denote the feature set. A concept s in triple (s, r, o)

is associated with a right feature fright . Similarly, an concept o in triple (s, r, o) is

associated with a left feature fleft . Therefore, a question q is asking acquisition agents

for the associated concepts of a feature such as “(, IsA, basketball player)?” We

use Q to denote the set of possible questions whose size is 2|C||R|. For any question

3.4. IMPROVING COVERAGE OF KB BY CROWD-SOURCING 35

set Q ⊆ Q, let Answer(Q) be the answers returned by a set of acquisition agents A

and Answer(Q) ⊂ X . If no agent has answer to the questions, Answer(Q) would

be an empty set ∅.

Knowledge Acquisition

Since the sentences in a knowledge base forms the basis for the reasoning process of

an intelligent system. The acquisition of commonsense knowledge can be considered

as the following formulation:

Definition 2. Given a commonsense knowledge base K, the knowledge acquisition

problem is using Q ⊆ Q to find a set of sentences Answer(Q) such that |{α :

(K ∧ Answer(Q)) `i α}| > |{α : K `i α}|. If no such question set Q exists, the K

contains sufficient knowledge for programs to use.

Definition 2 implies that we aim to add new sentences to K instead of the

sentences that are already in K or can be inferred from K. The most intuitive

method to find such sentences is to try all the possible questions, i.e. Q = Q.

Therefore, it always takes a lot of time to ask acquisition agents all the questions if

we build a knowledge base from scratch.

Resource Bound

In building large commonsense knowledge base, it is impratical to enumerate all the

possible questions (|Q| = 2|C||R|, this number is over millions for existing facts)

since the KB agent can only use a fixed amount of resources to get answers. The

36 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

resource limitation in knowledge acquisition comes from the number of acquisition

agents we can access and the computing power these agents have. For example, the

knowledge base constructors only have a fixed amount of money to recruit a fixed

number of workers on Amazon Mechanical Turk1 and each of them can answer at

most n questions within a short period of time. To quantify the resource limitation

in the knowledge acquisition process, we compute the number of questions that can

be answered by the acquisition agents in time T :

Definition 3. Given a set of available acquisition agents A = {a1, a2, ..., am} and

the number of questions N = {n1, n2, ..., nm} they can answered in time T , the

resource bound Θ in the knowledge acquisition process is
∑m

i=1 ni.

Note that ni in definition 3 is a small constant compared to the number of

possible questions, i.e. ni � |Q|. Since there is always only a fixed number of

agents involved in the crowd-sourcing of common sense, the resource bound Θ is

also far less than |Q|.

With the resource bound Θ, we cannot put all the possible questions into the

question set Q to get a good enough Answer(Q). So, the knowledge acquisition

problem turns to the resource-bounded case as the following definition:

Definition 4. Given a commonsense knowledge base K and a resource bound Θ,

the resource-bounded knowledge acquisition problem is using Q ⊆ Q to find a set

of sentences Answer(Q) such that |{α : (K ∧ Answer(Q)) `i α}| > |{α : K `i α}|

within time T where |Q| ≤ Θ

1https://www.mturk.com

3.4. IMPROVING COVERAGE OF KB BY CROWD-SOURCING 37

In the resource-bounded case, we aim to find a question set Q whose size is

smaller or equal to Θ such that the acquired answers infer more new sentences for

the knowledge base. With no assumption or background knowledge of the knowledge

domains, the question set could be any combination of 2|C||R| possible questions.

If we randomly choose one combination of questions, it is easy to get ∅ or the

sentences already in K. Many people try to find a productive question set Q to

elicit new sentences from agents. However, most of them are heuristics and require

a lot of domain knowledge or skills to codify the question set. It is hard to apply

these heuristics to another domain or large commonsense knowledge bases developed

from general public.

3.4.2 Guiding KB

Instead of using heuristics to reduce the size of question set, we think the key

component of finding a productive question set is to estimate the answers of a

question and their inference results before asking for answers from acquisition agents.

Using the estimated answers and inference results, we are able to put the most

productive questions into the question set so that we can get most new sentences

within the resource bound to improve the coverage of knowledge base.

Consider the problem of estimating the answers and their inference results. If we

have another knowledge base containing the target domain knowledge and it shares

some concepts and relations with K, we can use the sentences and inference results

in another knowledge base as plausible answers to the questions. Therefore, we can

compute the differences of the two knowledge bases to find a productive question set

38 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

Q such that we can elicit answers from agents to fill in the gaps. We say that this

process is knowledge base approximation and another knowledge base is a guiding

knowledge base Kg.

3.4.3 Similarity as a Weak Inference

Before giving the algorithms to find a productive question set, we illustrate the

inference algorithm used in the knowledge base approximation process.

KB Matrix

In order to compare the answers and inference results with other knowledge bases,

we put all the sentences in K to a “KB matrix” where the (i, j)th entry of the matrix

is the truth assignment of the sentence that is consisted of ith concept in C and jth

feature in F . For example, table 3.1 is a sub-matrix of a KB matrix.

IsA(, pet) AtLocation(, home) CapableOf(, fly) MadeOf(, metal)
cat True True False False
dog True ? False ?

airplane False False True True
toaster ? True ? True

Table 3.1: The example of KB matrix.

Semantics of KB matrix For any two rows i, j in the KB matrix, we can find

that the sentence (ci, f) in an inference rule can be replaced by sentence (cj, f) and

gives plausible inference results if ci and cj have the same truth assignments for

3.4. IMPROVING COVERAGE OF KB BY CROWD-SOURCING 39

the same feature. For example, the sentences PartOf (fur , cat) and IsA(cat , pet) in

modus ponens rule

PartOf (fur , cat)→ IsA(cat , pet),PartOf (fur , cat)

IsA(cat , pet)

can be replaced by PartOf (fur , dog) and IsA(dog , pet). After the replacement,

PartOf (fur , dog)→ IsA(dog , pet),PartOf (fur , dog)

IsA(dog , pet)

is still a plausible inference since dog and cat share the same truth assignments for

features PartOf (fur , ?) and IsA(?, pet).

From the above observation, we can find that two concepts will get involved in

the same inference rules if they have shared features and vice versa. In this thesis,

the similarity of two concepts is defined with respect to the shared features of the two

concepts. Therefore, we can transfer the inference results of the concept which is

similar to our targeted concepts instead of doing the complete inference for every

sentence in the knowledge base. Using similarity as a weak form of inference, we

are able to perform the same inference procedure in different knowledge bases. The

KB matrix is a good fit for computing similarity of two concepts.

Similarity Measure for Large and Noisy KB

For large commonsense knowledge bases that are constructed by crowd-sourcing

techniques, the confidence of a sentence in knowledge base may not be 100%. There-

fore, we relax the constraint of truth assignments of KB matrix to real numbers,

which indicate the confidence of being true for the sentences and are in range [−1, 1].

40 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

Since the size of knowledge base is always very large, the KB matrix must be

large and sparse. As in AnalogySpace [43], we apply truncated singular value decom-

position (truncated SVD) on KB matrix to smooth the noisy data in the knowledge

base. The concepts are then transformed to a k-dimensional vector space spanned

by eigen-features. In the vector space spanned by eigen-features, the proximity of

two concepts represents their level of overlaps in features. Therefore, the similarity

of two concept vectors ~c1 and ~c2 is defined as follows:

Sim(~c1, ~c2) =
~c1 · ~c2
‖~c1‖‖~c2‖

3.4.4 Acquisition via KB Approximation

Now that we have similarity measure for any two concepts in a knowledge base, we

can find the inference results of a concept. By measuring the differences of inference

results in K and Kg, we are able to create questions that would draw new sentences

for K to fill up the gaps.

Concept Coverage

In order to compare the inference results of two knowledge bases, sub-KB matrices

are created with the glossary mapping of concepts/relations in the two knowledge

bases. The inference results of a concept are reflected on its similar concepts because

the similar concepts are plausible to involve in the same inference rules. If the top n

similar concepts of a concept is the same in different knowledge bases, we say that

the coverage of the concept is the same in the two knowledge bases. If its coverage

3.4. IMPROVING COVERAGE OF KB BY CROWD-SOURCING 41

is different in two knowledge base, we can always find a new sentence to improve

the concept coverage. The coverage of each concept is evaluated using algorithm 5

where the number n of similar concepts is specified because we only compare the

similar concepts.

Algorithm 5 Concept Coverage (K,Kg,Map, n)

Require: A knowledge base K, a guiding knowledge base Kg, a mapping Map :
K → Kg of concepts/realtions of the two knowledge bases, and n to indicate
the number of similar concepts

Ensure: Coverage score of target concepts
1: Use the domain and range of Map to create KB matrices M and Mg of K and

Kg

2: for all concept c ∈M do
3: Get top n similar concepts of c in M to form set S
4: for all concept ci ∈ Map(c) do
5: Get top n similar concepts of ci in Mg to form set Si

6: end for
7: Coverage score of c =

|(
⋃

i Si)∩S|
|S|

8: end for

Question Set Generation

For the concepts with low coverage scores, we borrow the features from its mapped

concepts in guiding knowledge base Kg to generate new questions. The answers

to the generated questions are guaranteed to cover at least the sentences found in

Kg. Using algorithm 6, we include the questions generated from the concepts with

lowest coverage scores into Q and ensure that the size of Q is within the resource

bound Θ. Therefore, the generated questions are the ones that would draw answers

to approximate the inference results in the guiding knowledge base.

42 CHAPTER 3. COMMONSENSE KNOWLEDGE INTEGRATION

Algorithm 6 Generate Questions (K,Kg,Map,Θ)

Require: A knowledge base K, a guiding knowledge base Kg, a mapping Map :
K → Kg of concepts/realtions of the two knowledge bases, and a resource bound
Θ

Ensure: A question set Q and |Q| ≤ Θ
1: Sort the concepts according to their coverage scores and store them into a list L
2: Create KB matrix M and Mg of K and Kg

3: for all concept c ∈ L do
4: for all concept ci ∈ Map(c) do
5: Get features F of ci in Mg but not in M
6: for all feature f ∈ F do
7: if |Q| ≥ Θ then
8: return Q
9: end if
10: Get relation r from f
11: Create question q using c and r
12: Add q to Q
13: end for
14: end for
15: end for
16: return Q

Chapter 4

Experimental Design and Result

In order to evaluate the proposed mechanisms for the commonsense knowledge inte-

gration system, we deviced three experiments to see how these mechanism performs.

In the following sections, we’ll first introduce our implementation of the system, and

then evaluate the system from three aspects: correctness of matchmaking, improve-

ment in quality of reasoning results, and coverage improvement of crowd-sourced

KB.

4.1 Experimental Setup

The commonsense knowledge integration framework is implemented using JADE

(Java Agent DEvelopment Framework). ConceptNet, WordNet, and Wikipedia are

chosen to be our experimental knowledge bases. We used the ConceptNet and

WordNet APIs to implement the atomic reasoning methods.

43

44 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

4.1.1 Reasoning Method

The reasoning methods form the basis for reasoning composition. In our prototype

system, six reasoning methods are used for providing contextual information of an

input query. They are generalizer, similar concept finder, activity finder, actor

finder, location finder, and object finder.

Two generalizers are implemented to find the upper class or general description

of a concept. They use “hypernym” and “IsA” relation to generalize a concept in

WordNet and ConceptNet respectively. A similar concept finder outputs concepts

of the same type as input concept. As in AnalogySpace [43], a similar concept finder

represents concepts in English ConceptNet as a high dimensional vector space. The

similar concepts are then retrieved from the proximate concepts of its input con-

cept. For other reasoning methods, like activity/actor/location/object finder, they

utilize different relation types in ConceptNet to retrieve the related subevents/ac-

tors/locations/objects of an input concept. All of these reasoning methods reflect

the structure of commonsense semantic network in their inference procedure.

4.1.2 Planner

The profiles of aforementioned reasoning methods are stored in a predefined ontology

that follows the OWL-S specification. With the rule reasoner provided by Jena1, a

semantic web framework for java, the composition rules are written in Jena rules and

used for inferring new instances of reasoning methods. In contrast to the reasoning

1http://jena.sourceforge.net/

4.2. MATCHMAKING OF REASONING AGENTS 45

in large commonsense KB, it is much more efficient to do reasoning in small ontology

of reasoning profiles.

4.2 Matchmaking of Reasoning Agents

In order to evaluate the matchmaking results, we incorporated the proposed capa-

bility model into the system. The matchmaking results produced by our approach

are compared with the matches made by online users.

4.2.1 Experimental Design

In this experiment, snippets from google’s search results are selected as our corpus to

create the application-based concept vector v in the matchmaking. Related concepts

of a specific query term are returned by reasoning agents of the matched KB.

Collecting Matchmaking Lists From Online Users

In order to evaluate the matchmaking results, we collected a user-generated matching

list as the ground truth. The list was collected from workers on Amazon Mechanical

Turk, the largest crowd-sourcing market in the world. First, we uniformly sampled

100 concepts from each knowledge base as input queries from user agents. About

half of these concepts were found in at least two knowledge bases. Every worker in

our task was given a concept and three web pages containing related concepts of that

concept. The web pages are generated from the three knowledge bases. What the

worker required to do was to browse the web pages and rate the relatedness of the

46 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

web page and the given concept. Every concept was rated by 3 workers to increase

its validity. After this process, we created a ranking of knowledge bases for each

query concept according to their relatedness with the query concept. The knowledge

base ranked first was considered as the matched knowledge base for finding related

concepts.

Building Correlation Matrix

Since the correlations of concepts are in different forms for different knowledge bases,

we had to use different method to create the triples required by KB agents. Triples

in ConceptNet are its assertions; triples in WordNet are its words and the relations

between words; triples in Wikipedia are the pages and their links with other pages.

The θ in algorithm 1 is set to 0.1 for every KB agent.

4.2.2 Experimental Result

In this experiment, our matchmaking mechanism used the evaluation scores of the

query concept in each knowledge base to create a ranking of knowledge bases for

each query concept. Accuracy and rank correlation are two measures we used for

evaluating matchmaking correctness and relevance against the user-produced rank-

ing.

Correctness

Intuitively, the correctness of a matchmaking mechanism is whether it can find user’s

desired result. If the result ranked first in the matchmaking is also the knowledge

4.2. MATCHMAKING OF REASONING AGENTS 47

base ranked first by online users, we marked it as a “match”. The accuracy is thus

defined as the proportion of matches to query terms:

accuracy =
of matches

of query concepts

For all sampled concepts, the accuracy is 93.32%. If we only consider the concepts

that can be found in at least two knowledge bases, the accuracy is 87.67%, which is

slightly lower than the former case. This drop of accuracy appears in the concepts

with polysemy. For such concepts, it is likely that the application-based vector may

not be aligned with the user’s goal, therefore causing errors in matching knowledge

bases. It indicates that with application-based vectors corretly representing an ap-

plications’ goal, the matchmaker can produce an accurate match using the proposed

capability model.

Table 4.1: Experimental results: Accuracy and Kendall’s τ rank correlation coeffi-
cient

Accuracy τB
All concepts 93.321% 0.818
Concepts existing in
at least 2 KBs

87.671% 0.695

Relevance

We also compare the rank correlation of the matchmaking produced by the match-

maker and online users. The relevance of our matchmaking results and ranked list

produce by online users were measured by Kendall’s τ rank correlation coefficient

τB. Given two lists of same length, let nc be the number of concordant pairs (i.e.

48 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

pairs that are ranked in the same order in both rankings), nd be the number of

discordant pairs (i.e. pairs that are ranked in opposite order in the two rankings),

x0 be the number of ties that exists only in the matchmaking ranked list, and y0 be

the number of the ties that exists only in the ideal ranking list. Then, the Kendall

τ rank correlation coefficient for the existence of ties is defined as:

τB =
nc − nd√

(nc + nd + x0)(nc + nd + y0)
(4.1)

If the two ranked lists are in perfect agreement, τB is 1; if they are perfect dis-

agreement, τB is -1. In our experiment, the average τB are 0.818 and 0.695 for all

query concepts and query concepts in at least two knowledge bases respectively. A

positive correlation was found between the two lists. This result suggests that the

matchmaking result produced by our capability model is correspondent to users’

ranking of KBs.

4.2.3 Discussion

In this experiment, we also discovered some good properties of the capability model:

• Reflect the complexity of knowledge representation

The capability model of different knowledge bases can be further analyzed by

the dimensions of their capability model. The k selected by algorithm 1 is 31

for ConceptNet, whereas the k for WordNet is 11. This difference results from

the complexity of knowledge representations. The structure of WordNet is

much simpler than that of ConceptNet since most of the relations in WordNet

4.3. REASONING COMPOSITION 49

are (concept1, IsA, concept2) triples. Using the capability model, it is easy to

classify concepts into a particular categories in WordNet.

• Can be used for modeling expert knowledge

Wikipedia also contains expert knowledge in its pages, e.g. history, theory, or

formula of an item. When we use the links in pages to build the capability

model, we include both common sense and expert knowledge into the capability

description of Wikipedia. This extension suggests that the capability model

can also be used for modeling knowledge bases of very specific domains since

it requires only the correlation between concepts to build the model. The

evaluation score will be adjusted according to the correlation we consider in

the model. For example, the evaluation score for “Stuttgart” (a city) is higher

than that of “bridge” inWikipedia, because geography and history descriptions

are common in expert knowledge of a city but are not so common in the

descriptions of commonsense knowledge like “bridge”.

These properties allow us to apply this model to other KBs so that we can utilize not

only commonsense knowledge but also expert knowledge in our integration system.

4.3 Reasoning Composition

In the experiment of reasoning composition, we random sampled 750 concepts from

English ConceptNet. Every sampled concept is attached with four output types:

“actor, location, action, and object” to form 3,000 input queries. These queries

are answered by three reasoning approaches: 1) directly query English ConceptNet,

50 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

2) directly query the merged KB of ConceptNet and WordNet, and 3) reasoning

composition proposed in this thesis. Both the coverage and correctness of answers

are evaluated to see how the proposed composition procedure improves the reasoning

quality.

4.3.1 Coverage

The first part of experiment looks into the coverage of reasoning results. The cover-

age is the ability a reasoning approach has to answer the input queries. If a reasoning

approach gives an answer to the input query, we marked it as a “hit.” The coverage

is thus defined as the hit rate to a set of input queries:

hit rate =
of answered queries

of input queries

Figure 4.1 compares the hit rate of the three approaches.

Figure 4.1: Hit rate of queries

The ConceptNet itself answered 1,961 queries. If we only asked the merged KB

4.3. REASONING COMPOSITION 51

of ConceptNet and WordNet without further reasoning, it answered 2,076 queries.

The hit rate grew from 65.34% to 69.20% by combining the KBs. However, the

hit rate of the merged KB is still not ideal for user agents to use. Our proposed

reasoning composition approach answered 2,474 queries in this experiment (i.e. hit

rate = 82.47%). It is shown that the reasoning composition improved the coverage

of answers over 12% against the merged KB. Since the coverage represents the

percentage of use’s action that can be processed by the user agent, we think user

agent can handle most actions with our proposed reasoning composition. The other

unprocessed user actions can then be covered by the “fail-soft” design.

4.3.2 Correctness of Reasoning Results

In addition to the input queries answered by the merged KB, the reasoning compo-

sition approach answered other 398 queries. For the queries that were answered by

merged KB and reasoning composition, we have high confidence on their accuracy

since they have direct links to the input concept in the commonsense semantic net-

works. For other queries that are only answered by reasoning composition, they are

shuffled and put on Amazon Mechanical Turk to be voted. Each reasoning result

is rated as either relevant concept or non-relevant concept by at least 3 randomly

selected workers. It is treated as a good answer if at least half of the workers rated

it as relevant. Otherwise, it is considered as bad answer. There are 331 out of the

398 answers are rated as good answers (i.e. accuracy = 83.17%).

In our current implementation, we found that the bad answers are usually the

answers that are too general or in wrong concept types. The first issue comes from

52 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

the generalizer and similar concept finder. For example, we got “mall”, “school”,

and “beach” as the related location of “play soccer” because “play soccer” can be

generalized to “play” and retrieve concepts that are places for playing. This problem

suggests that the reasoning agents should selectively return the result to produce

more accurate composition. The second issue results from the ambiguity of natural

language concepts. Since concepts in ConceptNet are collected in natural language

texts, the users often input texts that can forms sentences rather than the texts

in the expected type. Therefore, we may get activities “buy product” and “spend

money” as the answer to the query “related objects of smoker”.

Both issues found from bad answers show the limitation in applying classical

reasoning on collaboratively-built KBs. Since the data is noisy and represented in a

flat network, there are exceptions in combining reasoning agents by planning. If we

remove the bad answers from the reasoning results of reasoning composition, the hit

rate still maintains at 80.23%. Our result demonstrates that it is still feasible to an-

swer queries by composition of reasoning methods even if there are some constraints

in applying logical reasoning on noisy KBs.

Comparison with Spreading Activation

The reasoning results are also evaluated against the spreading activation on English

ConceptNet. Since the spreading activation cannot not differentiate all the types

used in the 3,000 queries, we grouped actor and object into one type. The 398 queries

that are answered by reasoning composition are grouped into 338 queries and asked

spreading activation for answers. The spreading activation answered 167 out of the

4.4. IMPROVING COVERAGE OF KB 53

338 queries. These answers were also put on Amazon Mechanical Turk to verify their

correctness. We then mapped the good answer to 1 point and bad answer to 0 point.

The average score for spreading activation was only 0.419; the reasoning composition

got 0.916 for the same queries. Comparing the scores of spreading activation with

our reasoning composition using a paired t-test showed that the average 0.497 point

difference was statistically significant at the p < 0.0001 level, with a 95% confidence

interval of (0.422, 0.572). We conclude from the comparison that the reasoning

composition uses planning to combine reasoning agents gives it more flexibility and

inferential power over the previous spreading activation approach.

4.4 Improving Coverage of KB

In order to evaluate the proposed approach to resource-bounded crowdsourcing of

commonsense knowledge, we performed experiments using the ConceptNet APIs for

accessing and contributing data.

4.4.1 Acquisition method: Virtual Pets

The questions generated by algorithm 6 were added to the Virtual Pets [15], a

community-based game for collecting Chinese common sense. The players in Virtual

Pets answer questions such as “Spoon is used for ?”

The players in Virtual Pets are the agents defined in knowledge acquisition pro-

cess. They may ask/answer their pets questions, vote good or bad to an answer

they get, or use the commonsense points to exchange food for their pets. In aver-

54 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

age, there were 55 active players per day and each of them answers 3.16 questions in

one day. Therefore, the resource bound Θ in Virtual Pets is the number of questions

that can be answered by the users in one day, i.e. Θ ≈ 55 × 3.16 = 173.8. Since

the collaboratively-built knowledge base requires answers verified by consensus (i.e.

duplicated answers), the actual resource bound Θ is smaller than 173.8 per day. If

we try every possible question, it may take many years to get one answer for each

question.

In order not to interfere in the interaction flow of the game, we created a virtual

player to ask the generated questions to other players. We randomly selected 1/3 of

the active players every day to ask them the generated questions from the virtual

player. If the players think the question they are asked does not make sense, they

can simply pass it and report it to the system. For different players, they may get

same questions in the same day so that we can get the concensus answers from these

players.

4.4.2 Experimental Result

In this experiment, we asked 480 questions in Virtual Pets and took 6 weeks to collect

answers to these questions. Both the generated questions and collected answers were

verified by players to evaluate their qualities. We also put the collected sentences

to the Chinese ConceptNet to see how the generated questions improve the concept

coverage within the resource limitation.

4.4. IMPROVING COVERAGE OF KB 55

Concept Coverage

The first part of experiments looks into the coverage score of each concept in the

Chinese ConceptNet before we conducted the proposed question generation process.

There are 399 concepts whose coverage score ≥ 0.5 and 8,634 concepts whose cover-

age score < 0.5. Since the coverage score indicates the differences of inference results

between Chinese and English ConceptNet, the result shows that the inference results

of over 95% of concepts in Chinese ConceptNet were different from their mapped

concepts in English ConceptNet.

Table 4.2: Example of concepts with different coverage scores

coverage score >= 0.5 coverage score < 0.5

動物 (animal) 華盛頓 (Washington)
建築物 (building) 經濟學 (economics)
食物 (food) 吸血鬼 (vampire)
房間 (room) 星座 (constellation)
空氣 (air) 巧克力 (chocolate)

When we compared the concepts with different coverage scores (see examples

in table 4.2), we can easily find that most concepts with high coverage scores are

generic concepts such as food and animal, whereas the concepts with low coverage

scores are specific and culture-dependant concepts such as chocolate and vampire.

We think it is the game design make players in a game tend to create easy and

generic questions. If the questions are easy, they can get game points within a short

period of time. With English ConceptNet as a guiding KB, it is much easier to

create specific questions to ask players.

56 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

Quality of the Generated Questions

In the experiment, the question generation algorithm was used to produce 38,285

questions, with only 3,743 of which already in the Virtual Pets. This suggests that

the proposed approach identifies mostly new features rather than existing features

in the knowledge base for question generation.

Given the resource bound, 480 questions generated from the lowest coverage

scores are selected to ask players. These questions are mixed with the questions

generated by human players. We recorded the bad questions players reported in

the six weeks and make a comparison between the two question sets in table 4.3.

The percentage of good questions generated by our algorithm is 94.17% which is

comparable to the ones generated by human players

Table 4.3: Quality of the generated questions

By our algorithm By players

of questions 480 4,329
of bad questions 28 264
% of good questions 94.17% 93.90%

Quality of the Acquired Sentences

Within the resource bound, i.e. Θ ≈ 480 in 6 weeks, we collected 3,788 distinct

sentences. All collected sentences were shuffled to be voted. Each sentence is rated as

either good or bad by 3 randomly selected players, and it is treated as a good sentence

if two or more players rated the sentence as good. Otherwise, it is considered

as a bad sentence. There are 3,249 out of the 3,788 sentences are rated as good

4.4. IMPROVING COVERAGE OF KB 57

sentences by players (precision = 85.77%). Compared to the answers to player-

generated questions (80% for answer count ≥ 2 [15]), we think questions generated

by our algorithm are able to draw more good answers than the questions created by

human players. In addition, all of these collected sentences are new to the Chinese

ConceptNet since we generated questions from concepts with low coverage scores.

Therefore, the collected sentences have more expected contribution to the knowledge

base than the sentences collected from the original collection process.

Coverage Improvement

Table 4.4 summarizes the improvement in concept coverage from week 5 to week 8

in the proposed crowdsourcing process guided by the English ConceptNet. Taking

week 0 as the baseline, the improvement is measured in terms of the number of

concepts whose coverage score is < 0.5, denoted by |c−|, and the corresponding

percentage of improvement, denoted by ∆. Concept coverage improves by 33.51%

at week 5, and steadily improved to a 37.02% increase by the 8th week.

Table 4.4: Improvements in concept coverage

week 0 week 5 week 6 week 7 week 8

|c−| 8,630 5,783 5,495 5,450 5,435
∆ – 33.51% 36.33% 36.85% 37.02%

In addition to improving the original concepts in Chinese ConceptNet, 402 new

concepts were introduced to the knowledge base. The statistics show that we can

incrementally add new question-answer pairs so that the target knowledge base will

approximate the guiding KB. However, it is interesting to observe that someconcepts

58 CHAPTER 4. EXPERIMENTAL DESIGN AND RESULT

with low coverage scores may remain due to culturaldifferences and insufficient data

in the guiding KB.

Chapter 5

Case Study

In order to have user agents equipped with the reasoning results easily, we developed

REST API for user agent to access the reasoning results output by our integration

system. An agent simply sends input query via the API to get the contextual

information of the target concept. The reasoning function of two interface agents

are replaced by our system to see their improvement in providing scenarios for video

editing and dialog assistance interface.

5.1 Study 1: Storied Navigation

Storied Navigation [37] is a video editing system that helps editors compose a video

story by selecting videos from a set of annotated videos. After each clip is imported

into the system, Storied Navigation extracts the key concepts from the sentence an-

notation of clip and represents a sentence in a concept representation of contextually

59

60 CHAPTER 5. CASE STUDY

related concepts. Editors can then type sentences in natural language to retrieve

video sequences with similar concept representation.

In this study, we choose “the earthquake that struck Japan on March 11th,

2011” as our story domain. The corpus of videos is consisted of 23 clips with En-

glish descriptions collected from YouTube1. The description of clips served as the

text annotation of the clip. In our annotation phase, these videos are processed by

spreading activation and our reasoning API respectively to create concept represen-

tation.

From our record, Storied Navigation used 42 input queries during this annotation

phase. There are 13 out of the 42 queries are answered by spreading activation with

ConceptNet; 23 of them are answered by our system. Comparing the found actors

and objects by the two approaches (see table 5.1), we can find that the spreading

activation returns large amount but diverse answers, which require filtering before

the interface agent use them. Using our system, the interface agent is able to handle

more actions by being equipped with more relevant knowledge.

The quality of reasoning results brought the different feedbacks when an editor

try to find a public speech of a leader by typing “a leader says...”. As shown in figure

5.1, Storied Navigation with our system can find the video in which President Obama

gave a speech because it includes “leader” as part of the concept representation of the

retrieved video. On the other hand, Storied Navigation with spreading activation

fail to find a relevant video because it brings many irrelevant concepts and none

of them can be included into the concept representation of the annotated sentence

1http://www.youtube.com

5.2. STUDY 2: DIALOG ASSISTANT 61

Spreading Activation Reasoning Composition

(measure distance, 0.2194), (presi-
dent of united state, 0.2038), (event,
0.1638), (united state america,
0.1618), (government, 0.1511), (idea,
0.1511), (plant, 0.1477), (racist,
0.1307), (jail, 0.1307), (brat, 0.1307),
(star movie, 0.1306), (famous person,
0.1306), (michigan, 0.1265), (ameri-
can president, 0.1286), (chess piece,
0.1279), (fool, 0.1183), (gentleman,
0.1091), (idiot, 0.032)

(leader, 0.24), (politician, 0.2), (elect
official, 0.12), (chief of state, 0.12),
(coporate executive, 0.23), (academic
administrator, 0.12), (elect leader,
0.12), (presidency, 0.12), (head of
state, 0.12)

Table 5.1: Found related actors and objects of “president”

so that the similarity score is low. If an interface agent always fails to provide

suggestion to user, it will be a great distraction to users.

5.2 Study 2: Dialog Assistant

Dialog Assistant is another interface that helps users continue their conversation

with others by associating the related items of a topic. It uses picture cards as

communication cues. Since a conversation is similar to storytelling process, these

picture cards are grouped into the following story elements: actor, activity/event,

location, and object, which are correspond to our defined concept types. The agent

generates the picture cue cards using the topic or the picture user select to suggest

the plausible items for conversation. The Dialog Assistant helps user brainstorm

about what should be include in their conversation.

We developed two versions of Dialog Assistant. One is directly querying the

62 CHAPTER 5. CASE STUDY

(a) Storied Navigation with spreading activation

(b) Storied Navigation with our system

Figure 5.1: Storied Navigation suggests video when user types “a leader says...”

5.2. STUDY 2: DIALOG ASSISTANT 63

English ConceptNet for related items. Another is using our system to get the four

kinds of story elements. Figure 5.2 shows their difference in handling the same

action. Interface agent with our system provides more picture cues than the agent

with direct query. Therefore, it is possible for users to get more associations with

other items using the additional cues.

The selected picture cues in a conversation session forms an association sequence

to a topic. Two hypotheses are to be verified: 1) “our system helps user produce

longer association sequences” and 2) “these sequences are also reasonable to other

people.” A user was asked to compose 10 association sequences for the topic of

“earthquake” and “travel.” Each sequence was required to be consisted of 10 pic-

ture cues because a satisfactory conversation should keep a certain length. Unfortu-

nately, the user can only produce association sequence of 2 or 3 picture cues using

the Dialog Assistant with direct query. The user successfully compose 6 sequences

for “earthquake” and 4 sequences for “travel” using the Dialog Assistant with our

system. After creating the association sequences, 35 online users were recruited to

rate each association pair in these sequences. If the two concepts in a pair are highly

associated and related the topic the pair got 5 points. Otherwise, it got 1 point.

Figure 5.3 shows the numbmer of pairs for each medium score.

There are 55 pairs (medium score = 4 or 5) out of 90 pairs are considered

reasonable and related to topic. 18 pairs (medium score = 2 or 1) are considered

being composed of less relevant concepts and not so related to the specified topics.

Most of the cues suggested by Dialog Assistant form a reasonable transition of

story elements to other people. However, we also observed individual differences in

64 CHAPTER 5. CASE STUDY

(a) Dialog Assistant with direct query

(b) Dialog Assistant with our system

Figure 5.2: Dialog Assistant gives picture cues when user selects “destroy building”

5.2. STUDY 2: DIALOG ASSISTANT 65

Figure 5.3: Number of pairs for each medium score.

associating multiple concepts. The commonsense knowledge may plays a role to fill

in the gaps.

Chapter 6

Conclusion

This chapter sumarizes the contribution of this thesis and provides future work to

improve our commonsense knowledge integration system.

6.1 Summary of Contribution

This thesis proposes a multiagent system to integrate commonsense knowledge. In-

stead of merging multiple KBs into a single one, we combine reasoning methods

to answer queries. Three key mechanisms are proposed to achieve matchmaking

and interoperation of KBs. By matching KBs that contain the targeted knowledge,

leveraging multiple reasoning methods, and improving coverage of KB through a

guiding KB, we are able to answer more queries with higher accuracy.

Experiments have been conducted with ConceptNet, WordNet, and Wikipedia

to verify the feasibility of the mechanisms. The first experiment compared the

66

6.1. SUMMARY OF CONTRIBUTION 67

matchmaking results with user-produced ranking lists. The matchmaking using

our proposed capability model showed accuracy of over 85% and a positive rank

coefficient. With the capability model of KBs, the system can match the most

relevent reasoning agents to applications so that complex reasoning tasks can then be

built on top of the system. The sencond experiments compared the reasoning results

of reasoning composition, directly querying merged KB, and spreading activation.

The results showed 10% improvement in hit rate over direct querying the merged KB,

and 40% improvement in correctness over the conventional spreading activation. The

third experiment generated questions for growing commonsense KBs, such as the

Chinese ConceptNet collected via Virtual Pets, using English ConceptNet as a guide.

The results showed that the generated questions and their collected sentences are

as good as the ones collected from original acquisition process (precision = 94.17%

for questions and 85.77% for answers) with an improvement in concept coverage by

37.02%. The proposed approach can be embedded into a perpetual crowdsourcing

process to improve the coverage of KBs. It is also easy to target specific domains in

acquisition of commonsense knowledge within the resource bound.

Finally, two case studies on video editing interface and dialog assistance interface

demonstrated this proposed multiagent reasoning system is easy to be embedded into

interface agents so that they can perform robustly.

68 CHAPTER 6. CONCLUSION

6.2 Future Work

The current system presents an initial step towards integration of commonsense KBs.

This thesis focuses on providing integrated contextual reasoning with commonsense

semantic networks for interface agents. In order to bring applications easier ways

to utilize the commonsense reasoning results, we may extend the capability of rea-

soning agents to other types of reasoning methods. For example, we may include

temperal reasoning into one of our reasoning agents using the temperal knowledge

in Cyc. In addition, more in/output format and composition rule may also need

to be included to serve more kinds of reasoning requests. Our proposed multiagent

system is flexible to incorporate more reasoning methods to enhance the system’s

capability in providing useful reasoning results to applications.

Bibliography

[1] E. Cambria, A. Hussain, C. Havasi, and C. Eckl. AffectiveSpace: Blending common

sense and affective knowledge to perform emotive reasoning. In Proceedings of the

CAEPIA Workshop on Opinion Mining and Sentiment Analysis, 2009.

[2] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr., and T. M. Mitchell.

Coupled semi-supervised learning for information extraction. In Proceedings of the

Third ACM International Conference on Web Search and Data Mining, 2010.

[3] T. Chklovski. Learner: a system for acquiring commonsense knowledge by analogy.

In K-CAP ’03: Proceedings of the 2nd International Conference on Knowledge

Capture, 2003.

[4] T. Chklovski and Y. Gil. An analysis of knowledge collected from volunteer contrib-

utors. In Proceedings of the Twentieth National Conference on Artificial Intelligence

(AAAI-05), 2005.

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.

Indexing by latent semantic analysis. Journal of the American Society for Information

Science, 41(6):391–407, 1990.

[6] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

69

70 BIBLIOGRAPHY

[7] I. Eslick. Searching for commonsense. Master’s thesis, Massachusetts Institute of

Technology, 2006.

[8] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D. S.

Weld, and A. Yates. Methods for domain-independent information extraction from

the web: an experimental comparison. In Proceedings of the 19th national conference

on Artifical intelligence, 2004.

[9] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),

2007.

[10] C. Havasi, J. Pustejovsky, R. Speer, and H. Lieberman. Digital intuition: Applying

common sense using dimensionality reduction. IEEE Intelligent Systems, 24(4):24–

35, July 2009.

[11] C. Havasi, R. Speer, and J. Alonso. ConceptNet 3: A flexible, multilingual semantic

network for common sense knowledge. In Recent Advances in Natural Language

Processing, Borovets, Bulgaria, September 2007.

[12] C. Havasi, R. Speer, and J. Pustejovsky. Coarse word-sense disambiguation us-

ing common sense. In 2010 AAAI Fall Symposium on Common Sense Knowledge

(FSS10), 2010.

[13] Y.-L. Kuo and J. Y.-j. Hsu. Bridging common sense knowledge bases with analogy

by graph similarity. In 2010 AAAI Workshop on Collaboratively-Built Knowledge

Sources and Artificial Intelligence. AAAI Press, July 2010.

[14] Y.-L. Kuo and J. Y.-j. Hsu. Goal-oriented knowledge collection. In 2010 AAAI Fall

Symposium on Common Sense Knowledge (FSS10), 2010.

[15] Y. L. Kuo, J. C. Lee, K. Y. Chiang, R. Wang, E. Shen, C. W. Chan, and J. Y.-j. Hsu.

Community-based game design: experiments on social games for commonsense data

BIBLIOGRAPHY 71

collection. In Proceedings of the ACM SIGKDD Workshop on Human Computation,

2009.

[16] D. B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Communi-

cations of the ACM, 38(11):33–38, 1995.

[17] H. Lieberman. User interface goals, AI opportunities. AI Magazine, 30:16–23, 2009.

[18] H. Lieberman, H. Liu, P. Singh, and B. Barry. Beating common sense into interactive

applications. AI Magazine, 25:63–76, 2004.

[19] H. Liu, H. Lieberman, and T. Selker. GOOSE: a goal-oriented search engine with

commonsense. In Adaptive Hypermedia and Adaptive Web-Based Systems, Second

International Conference, AH 2002, 2002.

[20] H. Liu and P. Singh. ConceptNet: A practical commonsense reasoning toolkit. BT

Technology Journal, 22(4):211–226, 2004.

[21] D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith,

S. Narayanan, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. OWL-S:

Semantic Markup for Web Services. Technical report, 2004.

[22] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The chimaera ontology environ-

ment. In Proceedings of the Seventeenth National Conference on Artificial Intelligence

and Twelfth Conference on Innovative Applications of Artificial Intelligence, 2000.

[23] S. McIlraith and T. C. Son. Adapting golog for composition of semantic web services.

In Proceedings of the 8th International Conference on Knowledge Representation and

Reasoning, Toulouse, France, April 2002.

[24] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services on

the semantic web. The VLDB Journel, 12(4):43–54, November 2003.

[25] G. A. Miller. WordNet: A lexical database for English. Communications of the ACM,

38(11):39–41, 1995.

72 BIBLIOGRAPHY

[26] M. Minsky. The Society of Mind. Simon and Schuster, 1988.

[27] A. Newell and G. Ernst. The search for generality. In Proceedings of IFIP Congress,

1965.

[28] M. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh. Active in-

formation gathering in InfoSleuth. International Journal of Cooperative Information

Systems, 9(1/2):3–28, 2000.

[29] N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for automated ontology

merging and alignment. In Proceedings of the Seventeenth National Conference on

Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial

Intelligence, 2000.

[30] Organization for the Advancement of Structured Information Standards (OASIS).

Web Services Business Process Execution Language (WS-BPEL) Version 2.0, 2007.

[31] K. Panton, C. Matuszek, D. Lenat, D. Schneider, M. Witbrock, N. Siegel, and

B. Shepard. Common sense reasoning – from Cyc to intelligent assistant. Lecture

Notes in Computer Science, 3864:1–31, 2006.

[32] T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::Similarity - measuring the

relatedness of concepts. In Proceedings of the 19th National Conference on Artificial

Intelligence (AAAI-04), 2004.

[33] A. Preece, K. Hui, A. Gray, T. Bench-capon, D. Joes, and Z. Cui. The KRAFT

architecture for knowledge fusion and transformation. In Proceedings of the 19th

SGES International Conference on Knowledge-Based Systems and Applied Artificial

Intelligence, 1999.

[34] J. Rao, P. Kungas, and M. Matskin. Logic-based web services composition: from

service description to process model. In Proceedings of the 2004 International Con-

ference on Web Services, pages 446 – 453, July 2004.

BIBLIOGRAPHY 73

[35] J. Rao and X. Su. A Survey of Automated Web Service Composition Methods.

Semantic Web Services and Web Process Composition, 3387:43–54, 2005.

[36] L. Schubert and M. Tong. Extracting and evaluating general world knowledge from

the brown corpus. In Proceedings of the HLT-NAACL Workshop on Text Meaning,

2003.

[37] E. Y.-T. Shen, H. Lieberman, and G. Davenport. What’s next?: emergent storytelling

from video collection. In Proceedings of the 27th International Conference on Human

Factors in Computing Systems, CHI ’09, pages 809–818, New York, NY, USA, 2009.

ACM.

[38] M. P. Singh and M. N. Huhns. Service-Oriented Computing: Semantics, Processes,

Agents. Wiley, 2005.

[39] P. Singh. The public acquisition of commonsense knowledge. In Proceedings of AAAI

Spring Symposium, 2002.

[40] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and W. L. Zhu. Open mind

common sense: Knowledge acquisition from the general public. In On the Move

to Meaningful Internet Systems, 2002 - DOA/Coop IS/ODBASE 2002 Confederated

International Conferences DOA, CoopIS and ODBASE 2002, 2002.

[41] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Htn planning for web service

composition using shop2. Web Semantics: Science, Services and Agents on the World

Wide Web, 1(4):377 – 396, 2004.

[42] A. Smirnov, M. Pashkin, N. Chilov, and T. Levashova. Multi-agent architecture for

knowledge fusion from distributed sources. Lecture Notes in Artificial Intelligence,

9(2296):293–302, 2002.

[43] R. Speer, C. Havasi, and H. Lieberman. AnalogySpace: Reducing the dimensionality

of common sense knowledge. In Proceedings of AAAI-2008, 2008.

[44] M. Strube and S. P. Ponzetto. WikiRelate! computing semantic relatedness using

wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI-06), 2006.

[45] G. Stumme and A. Maedche. Fca-merge: Bottom-up merging of ontologies. In

Prceedings of the 7th International Conference on Artificial Intelligence, 2001.

[46] L. von Ahn, M. Kedia, and M. Blum. Verbosity: A game for collecting common-

sense knowledge. In ACM Conference on Human Factors in Computing Systems

(CHI Notes), pages 75–78, 2006.

74

